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Abstract

This paper introduces singular value decomposition (SVD)
algorithms for some standard polynomial comput at ions, in

the case where the coefficients are inexact or imperfectly
known. We first give an algorithm for computing univariate

GCD’S which gives exact results for interesting nearby prob-

lems, and give efficient algorithms for computing precisely
how nearby. We generalize this to multivariate GCD com-

put ation. Next, we adapt Lazard’s u-resultant algorithm for

the solution of overdetermined systems of polynomial equa-
tions to the inexact-coefficient case. We also briefly discuss
an application of the modified Lazard’s method to the loca-
tion of singular points on approximately known projections
of algebraic curves.

1 Introduction

We consider here the computation of useful and familiar al-
gebraic quantities from sets of input polynomials whose co-

efficients are only imperfectly known. To do this, we reduce

problems involving polynomials with floating point coeffi-

cients to more well-understood problems of numerical linear
algebra, to take advantage of the well-developed backward
error analysis of that field of study. We also use existing

high-quality numerical linear algebra software, such as LA-
PACK [1], wherever possible, as the numerical stability and
robustness of these codes is very well understood and tested.

Similar and related works include [2, 10, 13, 14, 15, 16,
17, 20, 21]. In addition, an anonymous referee has informed
us of the p-analysis toolbox in Matlab, written by Doyle,
Packard, Tits, and others, which apparently uses optimiza-

tion techniques to solve problems in the same spirit as this
paper. It is now becoming apparent through all these works
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that symbolic and numeric computation can be usefully done

together, combining the speed and low memory usage of nu-
meric computation with the mathematical veracity of sym-
bolic computation, in a sense to be made clearer below.

In section 2 we introduce our notation, discuss the sin-

gular value decomposition (SVD), and show how this can
be used to compute univariate GCD’S. This section also

develops the idea of ‘backward error analysis’ in this con-

text. This idea is also used in subsequent sections. This
work is similar to that in [10, 17], and particularly to the
former. That work was brought to our attention quite late

in the process of preparing this paper, and so a full com-
parison of the significance of the differences between our
work and theirs (principally that we use the 2-norm and
the SVD whilst they use the l-norm and a stabilized poly-

nomial remainder sequence) cannot be attempted at this
time. In section 3 we extend the univariate GCD computa-

tion to the multivariate case; this requires a reformulation

of the standard algorithms to improve numerical stability,
which seems to be new. In section 4 we look at the solution

of possibly overdetermined homogeneous multivariate prob-

lems with only finitely many solutions at infinity. To do this
we provide a constructive reformulation of an algorithm of
Lazarcl [12], changing his determinantal algorithm to a gen-

eralized eigenvalue problem. This work is similar to that
in [2, 13, 14, 15, 16, 20, 21], but differs in that the method
of this paper can handle the overdetermined case.

2 Univariate GCD

Suppose we are asked to compute the GCD of two polyno-
mials whose coefficients are given to only 2 decimal places,

and expected to produce a %atisfact ory ’ answer. This is in
contrast with the notion of ‘quasi-GCD’ of Schonhage [18],
where the input polynomials are supposed to have ‘exact’

coefficients which can be known to arbitrary accuracy by
some oracle.

For example, suppose we are given the polynomials p =
Z2 + 1.99z + 1.00 and q = x + 1.00 and asked to compute the
GCD of p and q. In the quasi-GCD approach of Schonhage,
we would need to be able to refer to an oracle to get more
figures of accuracy for the coefficients on demand, and the
concept of quasi-GCD itself makes reference to the ‘exact
GCD’ of the infinitely-precise input polynomials. We do not
take this approach here. Instead, we work with the data we
are given, but make a certain assumption as to its accuracy.

The fact that the coefficients are given above to two dec-
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imals means by one convention that the third and subse-

quent decimals are unknown, and may imply that we do

not place much reliance on the second place. Thus there is

an implied error tolerance (call it e) on the input—we may
be perfectly happy with an answer which is exact for some

p + Ap and q + Aq, where each of Ap and Aq is smaller (in
some sense) than e. For the problem given above, it seems
reasonable to take E = 0.01, or perhaps some moderate mul-

tiple of that.
Now it is obvious that for ‘most’ Ap and Aq the GCD

will just be (p+ Ap, g + Ag) = 1. It is equally obvious in this
case that this is unsatisfactory—for Ap = .Olx and Aq = O
we have (p + Ap, q + Aq) = x + 1.00, and this would be

preferred in many cases.

However, there are in fact an infinite number of pertur-
bations Ap and Aq which produce a monic degree 1 GCD;

for example, if we restrict Ap to be Apo + ApIZ (i.e. leave
the perturbed polynomial monic) and likewise Aq to be

Aqo + O~x, then the GCD of the perturbed polynomials will

be z + 0.99+ API – Aqo provided that the perturbations lie
on a subspace determined by

0.01 + Apo – Ap, + O.OIAqO – Aqo(Ap, – Aqo) = O .

Which of these possibly interesting GCDS should we com-

pute?

We take as the answer to this question that the GCD
we compute will be the one of highest possible degree with

perturbations I IAPI \ ~ s and I[Aql I s g; if there are more
than one such, then we take the one with the minimum 2-
norm (Euclidean norm) of the perturbation I IAPI l; + \ lAql l;.

This choice of norms is not arbitrary—it is chosen to facili-

tate computation. As previously mentioned, the work of [10]
uses the l-norm IIpl II = ~ Ipk I to measure polynomial size
and a stabilized polynomial remainder sequence. Here we

use the SVD to obtain precise results on the perturbation;
these may well be equivalent to the precise results obtained
in [10].

Some generalizations to the use of the 2-norm are pos-
sible at no real extra complication: in particular we can
handle the case where different weights are given to the per-

turbations of different coefficients, corresponding to the case
when different coefficients are known to different accuracies.

Such elaboration will usually be left for the reader.

This approach to computing GCD’S is based on a ‘back-
ward error’ point of view. We wish to compute the exact
answer to a possibly different question to the one posed.
Note this is a more general usage of the term ‘backward
error’ than that used in the context of proving that sim-
ple rounding errors in a computation can be interpreted as
perturbing the problem; rounding errors will not be consid-
ered in this paper, as they are usually far less significant
than the errors in the input data that we are allowing for.

This approach is very useful provided that the input data
is not known to great precision (or can be efficiently found

to great precision). It may not be useful if the notion of

lThe purely mathematical convention that all unstated digits are
zero is perhaps more common in computer algebra; indeed assuming
the input is exact is a commonplace in numerical analysis. We choose
to follow in this article a different convention, the experimentalists’
convention, to see if we can gain in simplicity of analysis and in speed
of the algorithms. This convention has semantic implications—that
is, it really alters the arithmetic model we are using, in the sense
that we are really specifying both a number and a tolerance on input.
Although not every arithmetic operation needs to be cognizant of
this tolerance (as for example would happen in interval arithmetic)
we will see that certain ‘blocks’ of operations will need this tolerance,
and without it progress cannot be made.

‘exact answer’ makes any sense for the problem at hand—in
that case, the notion of ‘quasi-GCD’ of Schonhage [18] may

be more useful. The algorithms considered in this work are

intended for use in the case where a satisfactory answer is

desired in the face of imperfect data.
Note that the problem of computing the GCD of two

polynomials over the reals is ‘ill-posed’, in that arbitrar-

ily small changes in the coefficients can make large changes

in the answer. Thus we may expect the traditional tech-
niques for dealing with ill-posed problems to be of some use.
In particular, we take the approach here of projecting the
problem onto the nearest degenerate problem (that is, the
nearest problem with a non-trivial or higher-degree GCD),
and then doing a minimization.

The main tool that we use for this is the Singular Value

Decomposition. We explain this tool in some detail here,

to make the exposition self-contained. To motivate the dis-

cussion below, note that the computation of GCDS can be

phrased as a matrix problem: the degree of the GCD of

two polynomials is related to the rank of their Sylvester ma-

trix, and indeed the GCD itself can be read off from the last
nonzero row of the reduced row-echelon form of the Sylvester

matrix [6] as we will see.

2.1 Notation

Given a polynomial p(z) = PO +PIZ +.. . +p~x” we associate

with it the vector p* = ~~, p~–l, . . . ,po]T. We say that p
has 2-norm \Ipl I equal to the 2-norm of its associated vector.

Then p(z) = p“;n where Zn = [Xn, Zn–l, . . . . 1]~,

We can represent polynomial multiplication by using the

Cauchy matrix

c, (p) =

f%
P.–1 P.

. .. . “.

. . .

PO

1
po p.

‘..
. .

PO

and it is easy to see that a(z) = p(z) . q(x) if and only if
a* = C’g (p)q*, if there are the right number of columns of
Cq (y), namely degree(q) + 1 (hence the subscript q).

Suppose p(z) and q(x) are polynomials in z, with the
degree of p equal to n and the degree of q equal to m. Let
S(p, q) be the Sylvester matrix (see e.g. [6]) of p and q. Note
it is of dimension m + n by m + n, and is linear in the
polynomial coefficients.

Remark 1 We can see the significance of the Sylvester ma-
trix for polynomial computations most easily by consider-
ing the matrix-vector multiplication S(p, q)im+m _ 1. Linear

combinations of the rows of S can be written as row-vector
times matrix multiplications; if there are several combina-
tions to be considered we can use matrix-matrix multiplica-
tion. If we multiply the row vector VT by the Sylvester ma-
trix S(p, q) and then by i~+~–l, we find wTS(p, q)i~+~–l

x m-lp(x)

x m-zp(x)

q(x)1
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or

[(am-mm-’ + . +alz+ao)p(z)

+ (bn-llZn-l + . . ~ + blz + bo)rl(z)] ,

where the a~ and bi are the entries of VT, partitioned con-
formably with the rows of S. Thus we see that linear combi-

nations of the rows of S are in a one-to-one correspondence

with polynomial combinations of p(z) and q(x). Thus if we

can find the linear combination of the rows of S that gives
a row with the most leading zeros (while still having some
nonzero entries) then we will have found the coefficients of

the GCD of p and g. But this is just the last row of the row
echelon form of S.

Thus for the example we began with, we must decide the

rank of the matrix

[

1.00 1.99 1.00

11.00 1.00 0,00 .

0.00 1.00 1.00

and to compute the last row of its ‘correct’ row-echelon form.

2.2 Elementary Numerical Analysis and the SVD

The main tool in numerical analysis for deciding the rank

of a matrix in the face of data perturbations (or, indeed,
in the face of the usually much more trivial roundoff per-

turbations) is the Singular Value Decomposition, or SVD.
We refer the reader to [8] for a geometric interpretation of
the SVD, as well as details on how to compute it. We note

that many packages exist for the reliable and efficient com-

putation of the SVD, and in particular the LAPACK project
paid particular attention to it.

Before we begin we describe the usual notation.

The norm of a vector w is, here, the Euclidean length of

v, denoted by [Ivl[z = ~- or more simply by Ilvll.

The 2-norm (Euclidean norm) of a matrix is

or, equivalently,

,,A,, =Y%w

This implies that I lAz\ I < IIAI I o IIzl [ for any vector x. Note
that this norm is different from the more easily computed

l?robenius norm

It can be shown that l\.41/2 S IIAIIF.

The lengths of the semi-axes of the ellipsoidal image of

the unit sphere under the mapping z ~ Az are called the
singular values of A, and are usually denoted by al 202 >
. . . z an in the n-dimensional case. IIA I[2 is just al.

A can be factored as A = LVY’T, where U and V are or-

thogonal and X = diag(al, 02, ..., an) is a diagonal matrix.

The orthogonal matrices U and V can be computed along
with the Oj if desired.

The most important property of the SVD for our al-
gebraic purposes is that Ok is the 2-norm distance to the
nearest matrix of rank strictly less than k. This is Corol-
lary 2.3-3 in [8]. In other words, if A has singular values

~j, j = 1,2, . . . . n arranged in the conventional decreas-

ing order, and A + E haa rank strictly less than k, then

IIEI12 z a,. Further, there is a matrix E with IIEI]z = m
such that the rank of A + E is strictly less than k. This ma-
trix E is easily constructible from the SVD of A, as follows.

Put A+E = Udiag(ol, cm, . . ..al. o,(),), ..., O)VT. Then

it is obvious that A + E has rank strictly less than k. A
simple computation shows that the norm of E = A + E – A

is the norm of Udiag(O, O,..., O, a~,a~+l,. . . . cr~)V~ which

is Ok since multiplication by orthogonal matrices does not
alter the 2-norm.

2.2.1 Relationship with eigenvalues

Singular values are often confused with eigenvalues. How-
ever, the singular values u~ of A are in fact the square roots

of the eigenvalues of ATA. If A happens to be symmetric
positive definite, then indeed the singular values of A are
the same as the eigenvalues of A; but in general they are

not the same. Geometrically, singular values measure the

amount of stretching A induces, without worrying about di-
rection changes (i.e. rot ation). In contrast, eigenvalues (if

complex) also measure the amount of rotation that A in-

duces.

2.3 Algorithms for Univariate GCD

Several algorithms exist to compute floating-point GCD’S.

We discuss only three here: Schonhage’s quasi-GCD algo-
rithm, which assumes the input is inexact but arbitrarily
precise, Noda and Sasaki’s scaled Euclidean algorithm [17],

and Karcanias and Mitrouli’s associated matrix pencil algo-

rithm [1 I]. As mentioned previously, the method of Hriber-
nig and Stetter [10] was brought to our notice too recently

to permit a real comparison with our method.

Schonhage’s algorithm does not do what we want. Here
we are assuming that the input is inaccurate and the inac-

curacy cannot be removed. Since the hypotheses on which

the algorithm is based are assumed not to apply, we do not
discuss this approach further.

Noda and Sasaki’s scaled Euclidean algorithm is simple

and efficient, but again is designed to do something slightly

different than what we want. It can produce unsatisfactory
answers on some simple examples, including the following
one from Schonhage: p = .Z4 + z + 1, q = Z3 — LiZ. For this

example, for any small q, the GCD is 1. More than that,

every polynomial set within 0.27 of this polynomial (with
q = 0) in 2.norm also has GCD 1. We can, however, find

values of q and reasonable tolerances (say q = 10–3 and
& = 10–6) such that Noda and Sasaki’s algorithm computes

a degree-1 G CD. This degree-1 G CD is completely spuri-
ous, in light of the above. We remark, however, that their

algorithm often produces satisfactory answers, particularly
for the approximate square-free decomposition, and it is ef-
ficient.

The algorithms of Karcanias and Mitrouli [11] are phra-

sed in the jargon of automatic control and hence less ac-
cessible to a general audience. Their first algorithm, which
they call the associated pencil algorithm, is equivalent to the
algorithm of Lazard (see section 4) for the solution of poly-

nomial systems, specialized to the univariat e case. Their
second algorithm, which they really advocate as being more
efficient, algorithm 3.1 in [11], is quite different from the as-
sociated pencil approach and from the approach used here.
However, their error analysis for their algorithm 3.1 is ap-
parently incomplete: they analyze each step but this does
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not guarantee the stability of the whole process (for exam-
ple one can stably compute the characteristic polynomial of

a matrix (using extra precision if necessary in intermediate

steps and then rounding to working precision, for example),
and then stably compute the roots of that polynomial, but it
is well known that first computing the characteristic polyno-

mial and then computing its roots is not a stable method for

computing eigenvalues). Finally, one of their error bounds

contains the term \IA[ ]%–1, where A is the companion matrix
for one of the input monic polynomials, and d is the maxi-

mum degree of the input polynomials. This term (and hence
the stated error bound) can be extremely large. Indeed for
their example (4.2), this number is larger than 10120, which

induces a gross over-estimate of the actual error achieved by

their algorithm.

The algorithm we present here for GCD computations
is simpler and may be more reliable, but may also be more

expensive than any of these. On the other hand, the ex-
pensive part of our algorithms can be carried out in purely
numerical subroutines, perhaps in FORTRAN, and if the

computer algebra system can take sufficient advantage of
connections to good numerical libraries, as AB can [24], the
actual performance of this approach may not be bad at all.

It is possible that some of the ideas presented here may

be adapted to improve instead, say, Noda and Sasaki’s al-
gorithm (or at least provide an a posterior error analysis
for it); however, the ideas used in this algorithm also prove

useful in the approximate solution of polynomial systems,
which is discussed in section 4.

2.4 Description of the SVD GCD algorithm

Input: Polynomials p and q, with deg(p) ~ deg(q), and an

error tolerance s >0.

Processing:

1. Form the Sylvester matrix S of p and q.

2. Compute the SVD of S = ?XZVT,

3. Find the maximum k such that ~k > E<= and

u~+l ~ & (if all Oj > s~m~ then set d = 1, and if
there is no such ‘gap’ in the singular values then report
failure). The index k is the declared rank of S, and

the degree of d will be nd = n – k.

4. Compute d by any of the following methods.

(a)

(b)

Compute d by the ordinary Euclidean algorithm
(perhaps scaled as Noda and Sasaki do it [17]),
terminating when the degree of the remainder is

nd.

(This rational method is speculative.) Form the

top k rows of UTS or, equivalently, of EVT, Com-
pute the row-echelon form of this matrix by Gaus-
sian elimination with partial pivoting. The nu-
merical behaviour of this algorithm can be bad,
depending on the conditioning of the matrix F
which transforms this matrix to row-echelon form.
It is possible that this problem may be dealt with

by a careful variation of iterative refinement, tak-
ing care to simultaneously iterate for a perturbed
Sylvester matrix.

(c) Solve the minimization problem defined below, in
section 2.6, by standard optimization techniques.
This has the advantage that the backward error

analysis (also discussed below) is all done at the
same time, and is numerically stable.

(d)

output :

Use the modified Lazard algorithm detailed in
section 4, specialized to the univariate case, to

find all the roots of the GCD and hence the GCD.
This is equivalent to the matrix pencil algorithm
of [11].

A polynomial d of degree nd which satisfies the
following properties:

1.

2.

3<

The polynomial d is the exact GCD of some pair of

polynomials p + Ap and q + Ag, where I lAp[ ] < t and
l]Aqlj2 < 2. We will discuss the quantity t below,

but note now that it is very easily bounded and only
slight ly less simply computed exactly a post eriori.

The degree of d satisfies

degree(d) = max degree (GCD(r, s)) .

where the maximum is taken over all polynomials r E

~~ (P) and s G ~t (q). By N. (p) we mean a closed
a-neighbourhood of p in the 2-norm:

Na(p) = {q(z) ldeg(q) = deg(p) and Ilp – qllz <a}.

Among all polynomials (d*, p + A@, q i- Ad) satisfying

the first two properties, the associated polynomials p+
Ap and q + Aq are the closest to p and q in the least-

squares sense.

Remark 2 Given an error bound, we have a well-defined

concept of GCD. If an error bound is not known in advance,

this algorithm can be used in several ways. For example:

*

●

●

●

We can ask if a set of polynomials has a nontrivial

GCD, and be assured that no polynomial within dis-
tance uk has one;

We can instead ask how far away is the first set of

polynomials with nontrivial GCD;

We can ask for the polynomials closest to the given

ones having a GCD of a given degree; or

We can inspect the sequence {Ok} for jumps to deter-

mine candidates for a “natural” GCD.- -

Other variations will no doubt occur to the reader.

We point out that the negative results (e.g., no polynomi-
als wit hin e have nontrivial GCD ) are the easiest to obtain—
the algorithm produces this type of result directly. On the
other hand, to explicitly find the nearest polynomials with

a GCD of specific degree requires the additional solution of
two least-squares problems, but as we will see the problems
involved give rise to banded, symmetric, Toeplitz, positive

definite systems, which can be solved very efficiently.

2.5 More precise statements

Lemma 1 If E = S(Ap, Aq) = S(p + Ap, q + &) – 1$’(P,q),
then [lAp\12 ~ IIEI12, llAqllz s IIEIIz, and

IIEII: s llElli = dl&ll; +nllAqll; ,

where [IEI 12 is the 2-norm of the matrix E and [IEI IF is the
Frobenius norm of the matrix E. Recall that the 2-norm of
the matrix E is, in contrast, the maximum value of I IEz[ 12

that can be obtained for any unit vector x.
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Proof The last inequality is obvious from the definitions.

The first two are consequences of the fact that I[-E [2 =

[IET112 and taking as unit vector z = [1, O,..., O]T we have

-ETz = [Apn, Apn_l, . . . ,Apo, O,. ... O] which implies IIE12 2

\ l~Txl[2 = IIAP[12 by definition. A similar axgument estab-
lishes the inequality for [ lAqllz.

Lemma 2 If the singular values of S(p, q) are Oj, j =

1,2, . . ..rn+n. anda1 ~uz ZCC. ~Ok>&~fi>

&~Ok+l~...Om+m (in other words, the numerical e-rank

of S is k), and if ~ is a common divisor of p + Ap and q + Aq

with degree(~) ~ m + n – k + 1, then one of llApl/ > s or
l[Aqll > s.

Proof The nearest rank m + n – k + 1 matrix S + E has

IIEIIz ~ u, > e~~-, Thus S(p+Ap, q+Aq) - S(p, q) =

S(Ap, Aq) has IlS(Ap, Aq) II ~ ok > ~~~. But if both

llA#l S S,and llAqll <s, then by Lemma 1 IIS(AP, Aq)ll; S
me -i- nc or I[S(Ap, Aq) 112S c-, a contradiction.

Lemma 3 Given a candidate approximate divisor d of p, we
define p+ Ap to be the (least-squares) ‘closest exact product’
if there exists a polynomial Qp(x) such that d.Qp = (p+ Ap)

exactly and Ap is as small as possible in the least squares
sense. We can compute Ap by solving the following linear
least squares problem: minimize IIAp* II where

Ap* = DPQg -p* ,

with the n + 1 by k + 1 Cauchy matrix DP := CP (d) (see

section 2.1) whose columns are the coefficients of d. If d has

degree rz~ = m + n – k, where k is defined as the numerical
s-rank of S(p, q), then we can bound the norm of I lApl I by

u~+l < IIAPII < IITPII

where rP is defined by p = @Pd+rP (i.e. ordinary polynomial
division).

Proof Immediate after the observation that olynomial mul-
Etriplication of d by QP = QO+QIZ+. +Qkz can be written

in linear algebra terms as the matrix-vector product DPQ~.

The final inequality arises because if p = QPd + rP then

–q; = DPQ; – p“

which must have norm greater than or equal to the minimum
value attainable, i.e. llr~ll 2 IIAPII.

Remark 3 Solution of this least-squares problem by the
method of normal equations gives us a banded symmet-
ric Toeplitz (positive definite because A = D~DP) ma-
trix whose first column is [d: + d? + d~~, dodl + dldz +

. ..d~~–ldmd . . . ..dodn~. O.... O]T where only the first nd + 1
entries are non zero (this presumes k > n~ ). Thus the band-

width of the system is directly related to the degree of the
putative GCD, while the size of A is k + 1 by k + 1. This

system can be solved in O(knd ) floating point operations by

the standard recurrences [8], which are particularly apt for
this system with its banded structure. There are faster al-

gorithms for solving non-banded symmetric positive definite

Toeplitz systems, which take O(k log2 k) operations, but in
the usual case where the degree of the GCD nd is small we
can expect the standard (and in any event simpler) algo-
rithm to be faster still.

The conditioning of A is also important. In the common
case when the degree of the computed GCD is 1, then A

is t ridiagonal, symmetric, and Toeplit z; in that case we can

explicitly calculate the eigenvalues in terms of the roots of

the Chebyshev polynomials of the second kind. This gives

that the condition number of A grows in the worst case like
4n2/r2 + O(n) where n is the degree of p; clearly for large

n this could be a problem (say n = 1000, depending on

the problem and the precision desired in the estimate for
Ap). This is obviously not a critical problem, though for

larger-degree GCD’S the conditioning may be worse.
If conditioning of A prevents a satisfactory answer from

being obtained, one can alter the Modified Gram-Schmidt

algorithm for QR factorization to take advantage of the spe-

cial form of DP; if DP = QR then Q is upper trapezoidal
in shape and R is upper nd + l-diagonal; still, this gives a
more expensive algorithm than the normal equations. But

the condition number of DP grows only like 2n/r (in the
degree one case), which may allow more accurate answers

than the normal equations approach.

Remark 4 For the degree-one case, there is an explicit an-
alytical formula for the minimum 2-norm Ap. We derive it
as follows (this result may not be original to this paper).

Suppose r is the root of our computed degree-one GCD.
Then the minimum 2-norm distance from p(x) to a polyno-
mial p(x) + Ap(z) with this root can be found by solving
the following rank-deficient least-squares problem with the

SVD [8].

1!
Apo
API

P(r)+[1,r,r2, . . ..rn] , =0

A;.
But the SVD of the 1 by n + 1 matrix R for this linear
system is trivial: U = [1], U1 = IIRIIz (as a vector), and V is
some orthogonal completion of R/ul. This gives us as the

minimum 2-norm solution

Ap* = –p(r)RT/u:

We see that the distance to the nearest polynomial with this

zero is proportional to the residual p(r).

There is a slightly simpler formula cited in [15] which
gives the l-norm distance to the nearest polynomial with

the given root.

Definition Suppose Ap has been computed by solving the

associated least-squares problem. Suppose also that Aq has
been computed. We define S = max(llApl[, llAqll). This is
our computable a posteriori bound on the distance to the

nearest set of input polynomials with nontrivial GCD.

Remark 5 This definition and Lemma 3 provide two a pos-
terior backward error bounds, one cheap and crude and one
slightly more expensive but wholly precise. It would also be
interesting and useful to have a good a priori bound. We

conjecture that one can replace the upper bound E in the
Lemma 2 with something like ME for a suitably moderate

constant M, possibly depending on n and m.

2.6 Optimization Algorithm

If we define the near-GCD as the solution to the following
minimization problem

m~[lCP(d)ql –pllz + l/Cq(d)qz – q[lz
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where CP(d) is the n + 1 by n — nd + 1 Cauchy matrix defined

by the unknown coefficients of the near-GCD d of degree ncf,

and similarly C’q (d) is the m+ 1 by rn-nd + 1 Cauchy matrix,

and ql and q2 are the unknown vectors of coefficients of the

corresponding quotient polynomials, then we see we have a

(quadratic) nonlinear least-squares problem to solve to find

d(x).

This can be done with standard optimization algorithms,

and has as byproduct the backward error computations dis-

cussed in the previous sections, because clearly once d(z)
has been specified, the minimum is achieved on each piece

of the function by choosing ql and q2 appropriately. We are

experimenting with this algorithm at present to see if k can

be competitive.

2.7 Example

Suppose

p = X5 + 5.503z4 + 9.765z3 + 7.647x2 + 2.762z + 0.37725

and

q=zd – 2.993z3 – 0.7745z2 + 2.0070z + 0.7605

are given.

If we compute the GCD by the SVD algorithm above, we

find that the singular values of the Sylvester matrix are ap-

proximately 23.1, 14.6, 7.62, 4.68, 3.59, 2.72, 1.11, .000141,

and .611E–5. From this we can decide that there is a per-

turbation of the data not much bigger than 1.4 .10-4 such

that there is a degree 2 GCD, and that the required pertur-

bation to make a degree 3 GcD is at least 1. l—that is, the

2-norm of the vector of coefficients of Ap or Aq must be at

least 1.1 to get a degree 3 GCD. Since the coefficients of the

input were given only to four significant figures, we conclude

that it is reasonable to look for a degree-2 GCD,

Now we continue with the algorithm and compute the

candidate GCD

d = X2 + 1.007z + 0.2534.

Then as we have seen in theory, d exactly divides some p+Ap

with I\& I < \ [rl 1, where r is the remainder on division of P

by d. This gives an upper bound on ] lApl \ of roughly 9.7.

10-5. In fact the minimum possible perturbation to p that

allows exact division by d has norm about 6.6. 10–6, as we

discover on solving the appropriate least-squares problem.

Similaly, d exactly divides g + Aq with I lAql I < I Irll,

where r is the remainder on division of q by d. This gives

an upper bound on I \Aql [ of roughly 5.7. 10-4, whereas

the minimum possible perturbation to q that allows exact

division by d has norm about 1.6.10-4. Note that this is

only slightly larger than the discriminating singular value of

the Sylvester matrix, which was 1.4.10-4.

The 2-norm of p is about 14, while the 2-norm of q is

about 4. Thus we see that our divisor d is a better divisor

of p than it is of q, but in both cases reJative changes in the

input of less than 10–4, that is, of the unknown digits of p

and q, allow us to say that our calculated G CD is exact.

Thus the algorithm provides a proof that there is no

more satisfactory GCD than the one given, in the sense that
the one computed has the highest possible degree consistent
with the data. Further, we can explicitly compute the small-
est perturbation of the initial data which makes the answer
exact, so that we can verify that the problem we have act u-

ally solved is reasonable.

Contrast this with a ‘forward error’ approach, which re-
quires you to know something more a priori about the ‘exact’
answer to the given problem.

2.8 Difficult cases

What do we do if there is no clear separation amongst sin-

gular values? This is likely to happen for large-degree poly-

nomials. The algorithm above will simply report that it has

failed; the user then must examine the singular values and

make her or his own decisions. This k the best that can be

done, in principle.

3 A first approach to multivariate GCD

It is often maintained that computation of GCD’S is essen-

tially a univariate problem, since we can compute multi-
variate GCD’s by interpolation. Substantial modification

of the standard exact algebraic interpolation algorithm is
necessary, however, for a satisfactory algorithm in the ap-

proximate case. We describe this modification below.
For simplicity, let us consider a bivariate problem first.

Suppose that the degrees of the input polynomials in z are
less than the degrees in y; now consider taking a random

value of x, say x = a, and then consider the reduced prob-
lem of computing the GCD of p(a, y) and q(a, y). We use

the SVD algorithm to find the GCD of these polynomials.

Because of the randomness of a this will tell us both the

degree and the sparsity pattern of the true GcD as a poly-

nomial in y, with probability y 1.

Now we take z as our main variable; we put z back as

an indeterminate, and choose a certain number of random

values ,Bi of y. For each & we compute the GCD of P(Z, /3i)

and q(z, /li). Note that these GCD’S will all be monic in z,
whereas the true GCD may have both z and y in its leading
term; hence the coefficients of the computed GCD’S will be
rational functions of ,D. However, we can take the denomina-

tor of these rational functions to be the same in every coef-
ficient, and this allows us to do the (sparse) interpolation at

little more than the cost of polynomial interpolation. Note

that taking more points than necessary allows us to use ideas
from least-squares approximation theory, and may allow us
to compute better answers. The problem of ‘unattainable’

or ‘near-unattainable’ points for rational interpolation may

be avoided in this fashion, as well.
In exact computation, each coefficient can be interpo-

lated separately. For approximate computation this might

allow slight ly different denominators in each case, which

would be unsatisfactory. So we interpolate all the coeffi-
cients simultaneously. We do this by setting up (conceptu-
ally) the linear system describing the interpolation problem,
and then semi-analytically solving the problem—that is, re-
ducing it to a sequence of smaller-order matrix problems.

Suppose there are Tz nonzero terms in each of the GCDS

of p($,,& ) and q(z, ~~). Suppose that we know that the GCD
of p(a, y) and q(a, y) has TV nonzero terms (and we know
their powers also: e.g. GCD(p(a, y), g(a, y)) = cly3 + c2y5

so TU = 2 and the powers are known).
Then we must be able to fit rational functions pi (y) /p.(y)

to the T, terms of the GCD’S of p(z, pi) and q(z, /3i). Note
that the coefficient of the monic term is just pO(y)/pO (y) and
thus we get, for each @, only Tc – 1 equations in the TmTv
unknown coefficients of the interpolating polynomials. This
tells us that if TZ = 1 we have to do something special, and
in fact this case is easy—since we know there is only one
term in z, and we know its power, just solve the reduced
polynomial GCD problem with z = 1 and multiply the result

by Xe where 1 is the known power of the GCD. If TZ > 1,
then we can take &f to be any number greater than or equal

to TYTL /(TZ – 1) (in particular 2TY will do but may require
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too many points if T. > 2), then we need only solve M GCD

problems in n – 1 variables.

Consider a specific example for clarity. Suppose we are

trying to recover the GCD 1 + 3g + 3y2Z from its sampled
values z + 6 at y = 1/3 (remember the GCD process takes a
monic GCD), x+9/4 at y = 2/3, z+O at y = –1/3, z–3/4

sty=–2/3,x+4/3aty=l, andx+2/3aty=–l.
Rationally interpolating the constant term of each GCD by

(PO+PIY +pzy2)/(qo + qly + qzy’) (the degrees and nonzero
terms are known by random sampling), we get the following

system of linear equations.

PO + Pipl + P?P2 – -fi(qo + piql + P:q’) = o

for (~i,~i) equal to (1/3, 6), (2/3, 9/4), . . . . (–1,2/3).

This is a sixth-order homogeneous system: we are look-
ing for an eigenvector corresponding to the zero eigenvalue.

If zero isn’t an eigenvalue, then there is no rational system
with the same denominator fitting the data.

For larger systems we quickly notice that the matrices
multiplying the numerator coefficients are all the same Van-

dermonde matrix. This permits economical solution. Plac-
ing the denominator coefficients last in the list of unknowns

leads to a block-bordered diagonal system that looks like

IBBB?I

where B is the M by Tz Vandermonde matrix associated
with the chosen collocation points /3i raised to the known

powers, and ~ is the diagonal matrix of the known values of

the i-th coefficient at each ~j. Calling this matrix A, then we
are looking for a vector that makes A{p} = O. Such a vector

will also make A~A{p} = O, so we may confine our search

to eigenvectors of the (square) matrix ATA. Indeed since

A~A = VE2VT if A = UZVT we see that the nullspace

of AT A is exactly the nullspace of A. This matrix is also

sparse, and we can, by stable block row reduction using the

SVD on BTB (which doesn’t alter the eigenvector we are
looking for), reduce it to a system of the form

[1
I G1

I G2
. .“.,

i

Explicit formulas for the Gi and A4 are as follows.

G, = (B~B)-lB%B

and
Tg–l

M = ~ (~ B) T(YiB) – (Y~B)TBGi .

i=l

We can find an eigenvector of this system by first finding an
eigenvect or of the lowest-order sub matrix, M. This eigen-
vector gives the coefficients of the denominator polynomial.

Finding the coefficients of the numerator polynomials is then
simply a matter of matrix multiplication.

We find the zero eigenvector of M by using the SVD
again. We simply take the last vector of V where M =

UXV~. It is possible that more than one vector will make
ATA{p} = O (if for example there is a common factor d(z)

among all coefficients, which will obviously cancel after di-
viding out the leading coefficient), in which case we take the

one of largest degree possible.

This process can be recursively iterated for the case of

more than two variables. Some questions remain: how many
points should we use for a good least-squares fit, and how

should we choose them? Randomness is necessary only for
avoiding coincidences (e.g. (z’ + YZ + 1, z + 1) = 1 if y # 2)
once the degree of the GCD in y is known.

Using a purely random choice of interpolation points

usually produces an unacceptably high condition number
for the interpolation/approximation problem: we often ob-

served condition numbers as high as 100, and on a problem
with only three digits of accuracy in the input this means
that only one digit will be accurate on the output. How-
ever, we have experimentally observed that it seems suffi-

cient to randomly scale each variable and choose the Cheby-

shev points in the new variable (that is, put x~ = /3ti~ + a
for some randomly chosen a and /3, and then choose the
ill values cos(nj/iM), j = 0..A4 – 1 for uk ). This typically

produces condition numbers of 5 to 10, though if we are un-
lucky with our choice of@ we can have very large condition

numbers indeed so this must be monitored. We originally

chose a and /3 as random variables on (O, 1) but later mod-
ified this to (1/2, 1). A good theory for the choice of points

is needed.

We note that as implemented, there are two ways in
which this algorithm can fail: due to unlucky random choi-

ces, or due to poor conditioning of the Vandermonde sys-

tems. So we must be able to check the answers that the

program produces.

3.1 Backward error analysis

As in the univariate case we can compute the nearest poly-
nomials to the input whose exact GCD is the one we have
computed. If we assume that the nearby polynomials are
dense, then there is no real difficulty in performing the cal-

culation. We give an example below, which is example 7
in [17].

Put

~0 = 0.25 – 0.25x2 – 0.25y2 – 0.9999zy + Xy3 + y~3

and

fl = –0.00001 + y – 1.0000IX + zy2 – yz2 + Z3 – yq .

If the coefficients are rounded in the obvious way the GCD
is X2 + y2 – 1. The algorithm as implemented computes

slightly different answers on different runs (because of the
randomness). A typical result is (with tolerance 0.0001)

c1= –0.99997 + 0.99937Z2 + y’ .

Finding the quotient that makes d(z, y)qo(x, Y) = jo (x, !/) is

easily set up as a set of (incompatible) linear equations for

the unknown coefficients of go. We get Dq* = f;, where the
matrix D is sparse and similar in structure to the symbolic
matrices in Lazard’s algorithm (section 4). It is not printed
here, for space reasons. We solve that set of equations in
the least-squares sense to find that the smallest change that

we can make in j. to make d an exact divisor has 2-norm
of about 0.0000816. Similarly, we must (and can) change ~1

by 0.00001125 to make it exactly divisible by ~.
Thus we see that the algorithm has found the exact an-

swer to a slightly different problem, a nearby dense one
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within the specified tolerance. The fact that d is not so very

different from X2 + yz – 1 tells us that the original problem
is not very sensitive to the errors in the input data.

If sparsity is important for the error analysis, that is, if

the user is really only interested in getting the exact solution
to nearby sparse problems, then it may not be true that the

problem solved exactly is nearby (or even exists at all).

4 Solution of Multivariate Systems

The algorithms we discuss here for the solution of polyno-

mial systems are similar to those of [2, 13, 14, 15], in that
they use the SVD and generalized eigenvalue computations

on a resultant-like matrix; however, the details of the com-

put ation are different. Aside from complexity differences,

the main difference is that the algorithm we adapt, Lazard’s
algorithm, is capable of solving over-determined systems.

(We not e, however, that for the n equation in n unknown
case, earlier methods [13] are superior. ) In principle we can
take some advantage of sparse matrix computations, for the

algorithm considered in the present paper, but we have not

yet done so, and in any event the matrices used here are not
as sparse as in the n x n case.

We note that if we treat the input data as being exact,

then overdetermined systems with approximately-known co-
efficients will, in general, have no solutions. Thus we are
forced to treat the input data as being inexact, and allow

the algorithm to pick out nearby interesting problems to

solve.
The method is based in part on the recognition of certain

matrices as being representations of multiplication by each

of the variables in an affine ring, and hence that the matrices

are commutative. This leads to an int cresting approach to
the computation of linear bases for polynomial ideals. See [7]

for details.

4.1 Lazard’s algorithm for solution of polynomial systems

In a following section we will be modifying Lazard’s algo-
rithm [12] to the present case of approximately-known in-
put polynomials. This section contains a brief exposition

by example of Lazard’s method, for easy reference. We use
Lazard’s own example, with some additional remarks to pre-
pare for the transition to the approximate case.

Consider the very simple system of equations

fo=–l+2x+y+x’+zy=o (1)

fl=–l+3$ +2y+$2–y2=o. (2)

These equations have three finite solutions, (O, 1), (1, –l),

and (—3, 1), and one solution at infinity in the common
asymptotic direction (– 1, 1).

Now put

f’=u+’vz+wy, (3)

where u, W, and w are scalar indeterminates. We now form
a matrix system out of these three polynomials, from the

coefficients of the monomials that occur in ~o, zfo, yfo,

fl, xfl, Yfl, fz, xf’, yfz, x’f’, xyf’, and y’f’. Lazard’s
Theorem 3.3 [12] tells us how many such polynomials to
construct, and what the maximum degree of the resulting
monomials is (in this case, D = 3). Taking the monomials in

lexicographic order, the resulting table is shown in Figure 1.

The table was constructed as follows. The exterior left-

hand column lists the monomials of degree less than or equal

to D = 3. The three interior parts correspond to the polyno-
mials jo, fl, and fj. The top row is a list of the monomials

of degree less than or equal to D–degree( f~ ). If m is a
monomial from the left-hand exterior column, and n is a

monomial from the top row, then the entry in the table in

that row and column intersection is the coefficient of m in
the polynomial nf~. For example, 3 is the coefficient of %Y
in yf’.

It is clear that this is a generalized Sylvester matrix, and

that if we put I = [1, Z, Y, Z2, ZY, . . . ,ZY2, Y3], then if Z is
the matrix above then the components of 22 are fo (x, Y),

xfo(z, y), yfo(z, y), fl(x, y), . . . . and y2f2(Z, y). For the

general problem, this matrix can get very large (though it
is sparse).

Lazard works with this table as one large matrix. We

will find it simpler to split it into four matrices, all purely

numerical. For the moment, however, we split it only into

two: the left-hand purely numerical part, which we will call
Z, and the right hand symbolic part, which we will call M.
Later we will split M’ = uIMU + vMU + wMW into three
numerical parts.

The algorithm proceeds as follows. First, we perform

Gaussian elimination on Z; that is, we factor Z = PLUR
into its row-echelon factorization [4]. Here, Z is the first six

(numeric) columns of the matrix in Figure 1, and it factors
into PLUR where P interchanges rows 5 and 7 and U is a
10 by 10 upper-triangular matrix, and the row-echelon form

of Z is a 10 by 6 matrix with its main diagonals all equal
to 1. We really need only P, L, and R for our purposes.
R tells us that the rank of Z is k = 6, which we need, and
we will apply L- lP- 1 (or, rather, the bottom rows of this,

corresponding to the nontrivial part of the result) to the
symbolic matrix M. This gives 21, as given below (some
entries are not printed, to save space).

[

–U–v+w * * * u –u

21 =
—V+w ***u o

U—V+2W * * * w ‘U+V

U+w *** o U+w 1
We then go on to apply more Gaussian elimination, in

order to compute a determinant. This determinant factors
into factors linear in u, v, and w, which is the crucial result
that the algorithm is based on. It turns out that this deter-

minant is precisely the determinant of U in the row echelon
factorization of 21 = PLUR, where P is a permutation ma-

trix, L is unit lower triangular, U is a nonsingular upper

triangular matrix, and R is the row echelon form. We re-

mark that this determinant of U is necessarily nonzero when
the computed factorization is correct on specialization—this
computation gives one of the simplest examples of a useful

‘proviso’ [5].
The determinant of U is

(V- W)(U+W) (U–3V+W)(U+ V-W).

From this determinant, we can read off the roots by the
coefficients of the linear factors:

(0,1,-1), (1,0,1), (1, –3, 1), (1,1,-1).

The first set of coefficients corresponds to the solution at in-

finity. There are three coefficients here because the method
is based on homogenization of the original polynomial set,

and hence we want to set the first coefficient to 1 (by scaling)
if we can.

Remark 6 The matrix M can be usefully split into three
numerical matrices, each multiplied by a scalar indetermi-
nate. Then the rectangular matrix F formed from the bot-

tom n – k rows of L-l P-l (where n = (D+ 1)(D +2)/2 is
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. . 1

1.

11
. . 1
. . .

lzy

–1 . ,

3–1.
2-1

13.

23

–1 ~ 2

1.
. . 1

–1 .
. . –1

lxyz’zyy’

u., ,..

vu . . . .

W. u...

V,u..

Wv. u.
., W.*U

. v..
. . . WV,
. . . Wv
. . . . . w

Figure 1: Lazard’s matrix

the row-dimension of Z, and k is the rank) can be used on
each piece of M:

FM = F(uMu + vMU + wMw)

= u(FMu) + v(~Mu) + w(~Mw)

= Uillo + VM1 + WM2 say,

and now we recognize this as a generalized eigenvaIue prob-
lem: we must find scalars u, v, and w which make the deter-
minant of some r x r submatrix of FM equal to zero. Note

that the matrix F should not be formed explicitly, but that
the matrices FM, can be formed during the row echelon
process by row operations.

For arbitrary matrices M., M., and Mw, this prob-
lem will have no solution; in fact, we are looking for over-

generalized eigenvalues. But these matrices are special. If

we form (in this example) 4 by 4 submatrices &fi of the fii

by simply deleting the last two columns (in general we will
have to be more sophisticated but for this example this is

good enough), and then form B = aMo + /3MI + 7M2 for

some randomly chosen scalars a, ,6, and ~, then the matri-

ces AO = MoB–l, AI = MIB-l, and AZ = M2B-1 all com-
mute with each other: AOAI = AIAo, AoA2 = A2A0, and
AIA2 = A2A1. This means, by a well-known theorem [9,
Theorem 2.3.3] that this guarantees the existence of a uni-

t ary matrix U such that U* A~ U are all upper triangular.
Thus

det(ulvfo + vM1 + wM2)

= det (U”(UMO + WMI + WMZ)B-l U) det B

= det (uTio + WTI + wT2 )

4
. det k? ~ (ur~ + vs~ + wt~) (4)

i=l

where each Ti is upper triangular: hence the determinant is

just the product of the diagonal entries ri, si, and ti.That

is, the determinant splits into linear factors (which we knew
from [12] already). This means that such ‘over-generalized’
eigenvalues do indeed exist..

This point of view leads to a useful method of solution,

which involves neither formation of large symbolic determi-
nants nor factorization of such. Indeed the point of view
leads to a useful algorithm in the symbolic context also.

Remark 7 Computation of the simultaneous triangulariz-
ing matrix U: Recent work shows how to simultaneously

diagonalize symmetric commuting matrices [3], and it is pos-
sible that these techniques may be adapted to the nonsym-

metric case. This is currently under invest igat ion.

Remark 8 Why do those matrices commute? For details,
see [7]. The following brief sketch gives the main ideas.

Choosing a generic combination of the ?vf~ matrices which
is invertible is like choosing a hyperplane at infinity such
that no solutions lie on that hyperplane. Let y be that
hyperplane, i.e. y = ~ ci~i such that y doesn’t vanish on
any solution.

Since ZO, . . . . x~ are homogeneous coordinates, xo/y, . . .,

Z./ y become affine coordinates of an affine ring which is
also a finite dimensional vector space, whose dimension is

the number of solutions of the system. Multiplication by

xi/y is represented by a matrix on this vector space. Since
the ring is commutative, these matrices commute.

It turns out that Mi B- 1 is similar to this multiplication

matrix, i.e. it is the same t ransformat ion acting on a vector
space with a different basis. So these matrices also commute.

Remark 9 It is crucial to be able to identify the rank of

Z correctly, and it is here that the algorithm as stated first
breaks down in the presence of data error. We will use the
SVD to rectify this problem in the next section.

Remark 10 What goes wrong when there are an infinite

number of solutions at infinity for the homogenized prob-
lem? We know that the theorems guaranteeing success do
not go through; it is likely that what happens is that there

are no r x r submatrices of fio, Lll or M2 that have full
rank, which makes the pencil determining the eigenvalues

singular.

4.2 Inexact coefficient version

Suppose that instead of the polynomials used in the example
of the previous section, we are given the same polynomials

divided by 3 and rounded to four decimal places, simulating
input data error. What happens if we simply run the above
algorithm?

It turns out that for this problem, it works fine, pro-

vided we don’t attempt to take a determinant at the end
and then factor it but rather solve an eigenvalue problem
as below. But can we guarantee that it will always work
well? No. Consider the problem of finding the roots of an
overdetermined polynomial system (e.g. a GCD from poly-
nomials with inexactly known coefficients). We know that
Gaussian elimination on the Sylvester matrix (which is what
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the matrix of Lazard’s algorithm works out to be in the uni-
variate case) will fail in the presence of data error—we will
not be able to reliably determine the rank of the matrix

and hence the number of solutions correctly. Other exam-
ples include linear systems in n variables whose matrices are

ill-conditioned; in this situation it means they are systems

close to ones with an infinite number of solutions.
How can we rescue this algorithm, in the presence of data

error such as was discussed in the previous paragraphs? We
use two ideas. The first is to use the SVD to correctly deter-
mine the rank of the numerical matrix; as in section 2 this

will give us tight lower bounds on the necessary perturba-
tions of the data to ensure that the solutions are correct.

The second idea is to solve the determinant factorization

problem as a generalized eigenvalue problem. This avoids
formation of the determinant as a polynomial in u, v, and

w to begin with, which is well-known to induce an insta-
bility in the rootfinding process [25]. In effect, we will be
generalizing the companion matrix method for finding roots
of univariat e polynomials: we will replace the polynomial
rootfinding problem with a (generalized) eigenvalue prob-
lem. Philosophically, this approach is very similar to that of
Manocha and Demmel [14, 15], and we hope therefore that

it shares the good robustness properties of their algorithms.

We now re-solve the modification of Lazard’s example to
exhibit our modifications to the algorithm.

Since the coefficients of the polynomials were all divided
by 3 and rounded to four digits, the numerical matrix Z is
obtained from the previous Z by replacing 1/3 with 0.3333
and 2/3 by 0.6667. Instead of computing the row-echelon

factorization of Z, we compute the SVD of Z, Z = UXVT.

U is a 10x 10 matrix. D is a 10x 6 matrix, the same shape as
Z, and it turns out that the singular values range from 1.89

to 0.107, and we conclude that the rank of Z is indeed 6. V
is a 6 x 6 matrix. We can form UT Z = ZV and notice that

the bottom four rows are all on the order of the machine

roundoff.
But we really wish to form UTM = uUTMti + VUTMV +

w UT MW, and look at the last four rows of each of these. To
do this it suffices to use the last four columns of U in the
product directly to produce

and

As noted in passing in
it suffices to define Ml

iifo=U? MU

MI = U? Mu

i12-2= u; M. .

the previous section, for this example

as the submatrices obtained from the
~i by taking the first four columns of each. In general we

can take r columns formed from random combinations of
the columns of fii (the same random combination for each
matrix, of course). Here we get

[

0.1505 0.2816 –0.1956 –0.1529

MO =
0.3535 0.3554 –0.3554 0.3510
0.4136 –0.0574 0.3804

I

0.2388 ‘
0.2106 –0.1312 0.5402 –0.2652

and similarly for Ml and M2.
We then form a matrix B as a random combination of

MO, MI, and Mz. Here we can for example choose B =
CIMO + ~MI + 7M2, with Q = 0.2190, ,/3 = 0.0470, and

-y = 0.6789, which gives a nonsingular matrix B (this hap-
pens with probability 1, and indeed we expect B to be well-
conditioned, also). The nonsingularity of B, and its well-
conditioning, may not matter if the eigenvalue problem is

solved in a good way, as we will see, but it is important

to take a generic combination to avoid spuriously multiple
eigenvalues because multiplicity complicates the algorithm.

We now solve the generalized eigenvalue problem

det(MO + wB) = O (5)

In general we will be concerned with the conditioning of the
eigenvalues and eigenvectors, and will wish to partition the

eigenvect or matrix into insensitive subspaces [14, 15], but

for this example all eigenvalues are well-separated and the
eigenproblem is very well conditioned. We thus get four
linearly independent eigenvectors.

By Lemma 1.3.17 in [9] (modified for the generalized

eigenvector case), these eigenvectors are common to all the

pencils M~ + M3. This means that if the matrix of eigen-
vectors is V, then V-1 M~B - 1V is upper triangular (in fact

diagonal) for each matrix. Note that the rows of V-1 are
left eigenvectors for each pencil also.

Thus our determinant becomes

det (V-l(UMO + VMI + WM2)B-lV) det B

4
—— det B ~(~r; + vsi + ~t;)

i=l

Note that ri may be expressed as y~MI z~ where yi is a

left eigenvector and xi is a right eigenvector corresponding
to the i-th eigenvalue. Similarly si = y~MI xi and ti=
y~M2~i. These formulas may also be arrived at by st andard
perturbation theory [22], and indeed that is how we first
found them. These formulas can be ex ressed succinctly as

8the Rayleigh quotient formula rzj = yi Mj xi. If all of these
quantities are small, then the root is ill-conditioned, and a
system with a multiple root is nearby.

The following table shows the results of applying this
formula to the current example.

i Y~MOZt Y~MI xi y~kfzxi
1 0.3462 0.3460 –0.3460

2 0.3860 0.0000 0.3861 (6)
3 –0.1111 0.3332 –0.1110
4 0.0000 –0.1006 0.1006

The zero in the bottom left-hand corner was, in fact, 4.
~o-15 Taking ratios, we get the (projective) roots (remem-

ber our input problem is about 10-4 different from Lazard’s
example)

1.0000 0.9994 –0.9993
1.0000 –0,0001 1.0003
1.0000 –3.0002 0.9999

(7)

0.0000 1.0000 –1.0000

A decision was made for the last one that dividing by 10-15
would produce an ‘effective infinity’.

Remark 11 The formulation of the coefficients of the fac-
tors as a generalized eigenvalue problem is quite independent
of the method used to form the matrices MU, M., and MW;
in particular this approach could be valuable in the purely

algebraic case because the basic generalized eigenvalues and
vectors that start the process off can be found by solving a
univariate problem. Once that has been accomplished, the

other roots can be read off directly by vector-matrix-vector
products.

Remark 12 What if the matrix pencils are all singular? In
this case we must have a nontrivial component at infinity;
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it is possible that this approach may shed some light on this

case as well. We are currently looking at this, and it seems
that the Kronecker canonical form may play an essential

role.

4.3 Multiple Roots

More work is necessary in the case when multiple roots are

encountered. We must

identify multiple eigenvalues by computing condition

numbers (as in [15]);

cluster them using standard techniques;

(proposed, not yet tested) add one more linear equa-

tion to the original system (no more work needs to

be done for this since matrices corresponding to linear
equations have already been reduced in the formation

of the matrix associated with a given variable);

use the new matrices, which have constant ei.genval-
ues, to find all values of the coordinates of the root by

taking the average of the trace of the matrix;

however, none of these have yet been implemented. We an-

ticipate success, but multiple roots are notoriously difficult.

4.4 Algorithm Overview

We indicate below just which parts of the algorithm have

been actually implemented. The most important thing not

yet implement ed is the handling of multiple roots, which we
did not need for our immediate application.

1

2

3

4

5

6

7

8

9

10

Form the numerical resultant matrix Z of the input

polynomials.

Form the n + 1 numerical M-matrices.

Compute the SVD of the resultant matrix, and its
rank, k.

Form the bottom r = dim(Z) – k rows of UTM~o,

ul’iw,j . . .. uTMzn.

Form the r generic columns of each matrix (not yet

implemented). Alternatively we could take an SVD of

one matrix to find a basis for its column space (this is
what is currently done), but the generic combination

trick is cheap and effective. Call these r by r matrices
Ma, Ml, . . . . Mn.

Form a generic matrix B by a random combination of

the Mi ‘s. Genericity is important to avoid spurious
multiplicities.

Find the left and right eigenvectors of MO + AB.

Partition the returned eigenvectors into insensitive eig-

enspaces corresponding to clusters of multiple eigenval-
ues (not yet implemented). The left and right eigen-
vectors may be useful in this cent ext.

Use the Rayleigh quotient formula ~ij = y~ilfj z, to
find all the distinct roots.

For each higher-dimensional invariant subspace Xi of
dimension ki ~ 2, for each j = 2,. ... n, follow the
steps outlined m Section 4.3 (not yet implemented).

4.5 Application to computation of singular points

One application of the solution of imperfectly-known overde-
termined polynomial systems is the computation of singular
points of algebraic curves where the projections of the curves

are only known by interpolation of data known to a certain

fixed number of decimal places. Mika Seppala and Robert

Silhol [19] wished to do this for the following example. After
interpolation, their curve was P(X, y) = O where P(X, y) was

4.0y4 + 17.0.z2y2 + 1.307zy2 – 19.572938y2 + 4.0z4

+5.228x3 – 18.29175$2 – 5.228x + 15.29175.

The level of error in this interpolated polynomial is not im-

mediately apparent. To discover it a priori would involve

careful analysis of the interpolation process used to create
it. An anonymous referee pointed out that this problem is

quadratic in y2, and we could have split this problem into
two univariate ones and applied the techniques of the first

part of this paper.
The system that we wish to solve is P(Z, y) = O, PZ(Z, y) =

O, and pv (z, y) = O. Note that if the input coefficients are
treated as being exact, then there are no real solutions.

We ran our ahzorithm on this set of Dolvnomials. On

the first run, we &covered that there is ~re~isely one real
root, if the tolerance is taken to be larger than 0.000284.

This is in fact the smallest nonzero singular value of the

generalized Sylvester system, so if the tolerance is smaller

than this, there are no solutions. The next smallest singular
value is 0.101. The largest singular value is about 187 (this

gives a natural scale for the problem). Thus we see a clear

separation between singular values, and this gives us a good
idea how accurate the input data was. We see that a relative

change in the input data of about 0.000284/187 or 1.5, 10–6
turns the system from one that has no solution to one that
has exactly one solution.

The algorithm then computed the singular point z =

1.1838, y = 1.700 10-7. Approaches using Grobner bases

to this problem produced very unsatisfactory results.

4.6 implementation

The above procedure has been implemented in the Axiom

Version 2 library extension language [23]. This platform,

known as An during its development, provides the necessary

symbolic facilities while allowing efficient access to libraries
written in other languages [24]. For this paper we have made
use of mature Fortran libraries to handle the singular value
decomposition and the generalized eigenvalue sub-problems.

From a top-level view, the program to solve multivariate
polynomial systems is expressed in about a dozen pages of

source code (780 lines). The program makes use of the base
Axiom Version 2 stand-alone library, an Axiom library pack-

age to rePresent matrices in Fortran form, and the routines
DGESVD and DGEGV from LAPACK [1].

One inconvenience was that the foreign function interface

does not yet have native support for Fortran calling conven-
tions. The scalar arguments had to be placed in Records to

pass them, by reference, as Fortran expects.
Our first implementation of the program used the IBM

ESSL library to compute the SVD and the generalized eigen-
values. This had a more convenient interface for the SVD,
but the generalized eigenvalue routine was not as convenient.

Remark 13. The code is compiled with an optimizing
compiler. This, and the interconnection to efficiently com-
piled Fortran code, allows much faster computation than
one normally finds in a computer algebraic environment
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5 Concluding Remarks

The algorithms for the univariate and multivariate GCD
computations described in the first part of this paper have
been implemented in a computer algebra language, and are

thus not restricted to machine-size tolerances and coeffi-
cients.

The algorithm described in the second part of this paper

solves any zero-dimensional homogeneous system of equa-

t ions. The method may also be applied to affme systems
by adding an extra “homogenizing” variable, provided that

when the system is homogenized the system has a finite
number of solutions.

We have employed a technique of randomizing rank-def-
icient matrices, producing smaller matrices with rows or
columns consisting of randomized combinations of rows or
columns from the original matrix. This can be useful in re-
ducing the cost of algorithms on dense matrices when they
are not of full rank, since a rank-sized randomized matrix

will carry full information.

From the implementation perspective, we observe that
this symbolic-numeric work was greatly facilitated by mak-

ing direct use of Fortran libraries for the linear algebra sub-
problems. An important aspect, which we hope becomes

more common in computer algebra systems, is that we were

not restricted to some predetermined set of foreign libraries.
This allowed us to change the choice of linear algebra li-
braries, easily, quite late in the implementation.

Several research questions are left unanswered by this
paper. In particular, we would like to see a good theory
for the choice of collocation points in the multivariate GCD
algorithm; an ‘optimal’ optimization method for the com-

putation of univariate GCD’S, perhaps using the SVD more
directly; an implementation of the multiple root clustering
heuristics in the solution of multivariate systems; proper use

of sparse matrix t ethnology; and an efficient algorithm for

simultaneous upper triangularization of nearly commuting
matrices. Finally, the connection of the Kroenecker Canmi-

cal Form to the case where the ideal is not zero-dimensional
may be interesting to explore.
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